The effect of dormancy and rest-breaking on production and fruit quality
Dormancy

- Dormancy concept - different types of dormancy
- Chilling requirements - factors affecting chilling requirements, monitoring systems, starting, final date
- Methods to determine chilling requirements for new variety
- Timing rest-breaking sprays
Effect of rest breaking on

Budbreak

Future

Vegetative

Production

Generative

Fruit set

Fruit size

Fruit colour

Fruit firmness

Physiological disorders

Stem-end russeting

Ca related disorders (e.g. bitter pit)

Storage potential

Production

Quality

Production export quality fruit

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Definition Dormancy

- **Physiological condition of deciduous fruit trees during which no noticeable growth takes place:**
 - No cell division takes place in terminal or lateral buds.
 - Rest cannot be broken even when temperatures and soil moisture favor growth.
 - No bud break with gibberellic acid or rest breaking sprays (DNOC, Dormex, etc.) and pruning.
 - Dormancy or rest can only be broken by exposure to winter chilling.
Dormancy three stages:

- **paradormancy** (summer dormancy or correlative inhibition)
- **endodormancy** (winter dormancy or rest)
- **ecodormancy** (imposed dormancy or quiescence)

- Paradormancy regulated by conditions within plant but outside bud, e.g. apical dominance
- Endodormancy controlled by conditions within bud, e.g., failure of buds to grow in autumn
- Ecodormancy controlled by conditions outside plant, failure of buds to grow in late winter
End of rest

- 50% of the buds capable to grow within a given period time
- when held at an appropriate temperature with their bases in water
Factors affecting dormancy

Dormancy induction, maintenance and release continuum

Dormancy affected by:
- site of the bud,
- photoperiod,
- environmental induction
 - Low temperature in colder regions
 - Low temperatures + short days in warmer areas
- phytohormones,
- effective chilling temperatures,
- bud differences,
- environment and/or cultural practices,
- dormancy breaking chemicals,
- stress management.

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Factors affecting dormancy

- 1885 H. Muller-Thurgau shortened shoot growth period
- Early inception of bud dormancy and shortens its duration
- 1934 Chandler and Tufts extended growth period of shoots
- Delays bud break the following spring if there is insufficient chilling

Vegetative maturity critical point in dormancy cycle
Vegetative maturity critical point in dormancy cycle

Factors affecting winter rest

- Climate preceding summer
 - C.R. >0-50%
 - High stress
 - Warm autumns
 - Time of leaf drop
 - chilling efficiency < 60%
 - Sink hormones
 - Leaves
- C.R. <20-50%
 - Low stress
 - Lower Chill Req.

Bud Quality
- Weak
 - High Chill reg.

Winter Temp
- Winter rain
 - Bud Temp
 - Anaerobic
 - >rest - breaking

Reserves

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Chill-unit accumulation

- Temperatures > or < 0° C to 7° C are not believed to contribute toward chill-unit accumulation.
- Temperatures below 0° C are considered to have no effect in breaking dormancy.

Models
- "Richardson" or "Utah"
- Temperatures between 0° and 16° C promote the breaking of rest.
- Maximum promotion at 7° C (1h at 7° C = 1 chill unit - CU).
“Dynamic model”

- Temperatures between 0 and 13° have positive effects
- Above 18° C negative
- 13° to 16° C enhance response, cycled with lower temperatures
- Dynamic model differs from Utah Model in that chilling units, once accumulated, cannot be negated by high temperature.

Fixed - temperature 28 hours at 6° C

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
South African model
(ICE - Infruitec Chill Units)

- Mixture Richardson/Dynamic
- high temperatures no effect on chill unit accumulation.

<table>
<thead>
<tr>
<th>Degree C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.4</td>
<td>0</td>
</tr>
<tr>
<td>1.5 - 2.4</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5 - 9.1</td>
<td>1</td>
</tr>
<tr>
<td>9.2 - 12.4</td>
<td>0.5</td>
</tr>
<tr>
<td>> 12.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Chilling requirements different varieties and rootstocks

- reserve status
- climatic and moisture stress
- pest and diseases
- time of harvest
- time of terminal bud formation

Within seasons

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Completion of rest

buds break when exposed to 20° C in a laboratory

1 August
Varieties

<table>
<thead>
<tr>
<th>Chilling requirements</th>
<th>Varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I (extreme high)</td>
<td>Rome Beauty, Macoun (family of Honeycrisp), Northern Spy</td>
</tr>
<tr>
<td>Category II</td>
<td>McIntosh</td>
</tr>
<tr>
<td>Category III</td>
<td>Winesap</td>
</tr>
<tr>
<td>Category IV</td>
<td>Red Delicious types, Golden Delicious types, Cox Orange. Gala types, Fuji types (Own research)</td>
</tr>
<tr>
<td>Category V</td>
<td>Yellow Newtown</td>
</tr>
<tr>
<td>Category VI</td>
<td>Early McIntosh, Winter Banana, White Winter Pearmain, Granny Smith</td>
</tr>
<tr>
<td>Category VII</td>
<td>Pink Lady®</td>
</tr>
</tbody>
</table>
Rootstocks

<table>
<thead>
<tr>
<th>Chilling requirements</th>
<th>Rootstocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>Indonesian rootstocks</td>
</tr>
<tr>
<td>Low</td>
<td>M26, M27, B9</td>
</tr>
<tr>
<td>High</td>
<td>MM104, MM106, Northern Spy</td>
</tr>
<tr>
<td>850 ICE/T.A.S.C. units</td>
<td>M9</td>
</tr>
</tbody>
</table>
Start of rest-breaking

Tree reached physiological maturity

maximum depth rest leaf-drop in autumn.

buds deepest rest

50% leaf drop

gibberellic acid treatments
Effect lack of chilling (or delayed foliation - DF)

Lack of effective chilling has an influence not only on tree development but fruit quality as well:

- **Effect on the tree**
 - Poor and late start of laterals,
 - Relative advantage to terminals,
 - Correlative inhibition of laterals ("bare wood"),
 - Vigorous and long terminal growth,
 - Need for excessive pruning,
 - Few spurs,
 - Delay in fruit bearing,
 - Low yield,
 - Unchecked vegetative growth,
 - High chilling requirement in vigorously growing branches,
 - Delayed and protracted flowering season,
 - Flower buds open prior to leaf buds,
 - Excessive drain on reserves,
 - Lack of leaf coverage during the season, leads to sunburn of wood,
Effect lack of chilling (or delayed foliation - DF)

Lack of effective chilling has an influence not only on tree development but fruit quality as well:

- **Fruit**
 - Poor fruit development,
 - Small fruit,
 - Irregular ripening
 - Size distribution affected,
 - Storage potential affected,
 - Possible increase small fruit and in fruit drop.
Rest - break Agents

Rest-breaking agents

Efficacy
- stage / depth endodormancy
- climate

Timing of rest-breaking spray
- > 1 August weigh buds
- 2-year-old wood 2x per week

Plant not at same level rest-breaking @ same date

Bud damage

Significant increase bud weight = physio. correct stage
Rest - break Agents

ACTION

- arsenic, cyanide, mineral oils, thiodiazuron → respiratory metabolism
- thiourea and cyanamide treatments → reduced catalase activity
- hydrogen cyanamide treatments → stress response to the shock treatment
Effect lack of chilling on production and fruit set

- Extended blossom period
- < 30% fruit buds open
- Female flower parts or seed-forming parts deformed
- Male organs or pollen producing parts affected

Fruit set affected

Leaf buds - greater chilling requirement

Emergence > delayed than flower buds

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Consequences lack of chilling

- Poor blossom quality
- Poor pollination
- Increased "drop"
- Leaf development delayed
- Early period - fruit development at expense of reserves
- Poor differentiation fruit buds following season

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Maturity

Fruit maturity less delayed than blossoming

shorter life of the fruit on the tree

Fruit of inferior quality

shorter post-harvest life

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Effect of lack of chilling on fruit quality

Negative effect on

- Fruit size
 - delayed leaf development
 - leaf fruit ratio <
 - seed numbers <
 - Lack of spur leaves

- Gibberellic acid <

- Fruit colour
 - leaf fruit ratio <
 - lower carbohydrate production

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Firmness

Low chilling has a direct effect on cell density of the fruit (see next diagram)

- Calcium levels affected by low chilling
- Ethylene production >
- Respiration rate >
- Ultra structural changes in apple cells

Softening fruit

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Firmness

Previous Season

Stress

Temperature from rest-break until 6 weeks from full bloom

Winter chilling

Blossom thinning
Stem-end russetting

low chilling (<1000 CU) results in stem-end russetting

low levels of gibberrelic acid available to the fruit

spur leaves are lacking

Examples: Gala, Red Delicious, Elstar, Stem-end cracking Fuji?
Calcium related disorders

- Spur leaves responsible large part of the transport calcium
 - First from reserves
 - then from soil via roots

Lack of spur leaves

- Ca - level of the fruitlet at 62 days from full bloom
- bitter pit, lenticel spot, etc.
- low or lack of chilling

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.
Optimumising flow of calcium towards the fruit

- Fruit on dards with a large actively transpiring leaf area.
- Effective rest-breaking
- Well developed shoot emanating from the bourse capable of an optimum transpiration flow past the end of the dard.
Effect on Fruit quality in practice

Effect chilling on fruit quality – Gala and Elstar

GALA

Brazil
South Africa
New Zealand
Chile
Washington State
USA

Increased Chilling

Fraiburgo to Vacaria

Fruit Quality

Large fruit size
Less BP*
S-E Russetting**

*BP = Bitter Pit
**S-E Russting = Stem -end Russeting

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to
third person without specific written consent.
Effect on Fruit quality in practice

Variety Elstar, Holland more stem-end russeting during years when effective chilling is low

effective chilling is low

- low reserve status
- late termination of growth
- delayed leaf-drop

© Copyright T.A.S.C. 2004
This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.