Entomological Research at the USDA-ARS

Yakima Agricultural Research Laboratory USDA-ARS

Garczynski, Horton, Knight, Lacey, Landolt, Neven, Unruh, Yee

Codling Moth Explosive Reproductive Potential in the arid Western U.S.

OP To Be Phase Out in the U.S.

Phosmet, chlorpyrifos, diazinon, and malathion face further regulatory action

So what, OP insecticide use is down 50% since FQPA in 1996

AND,

There are *NOW* more insecticides and miticides registered in tree fruits than ever before

Issues with New Materials

- >Low human toxicity, safer to the environment.
- >More selective materials.
- >More active than OP's against resistant targets
 - Good for pests
 - Bad for natural enemies
- >Most require ingestion to be effective
 - Bad for CM control
 - Requires better timing
- >Generally more expensive.
- >Organic production.

OP-alternatives

Insecticides	Class	Activity	
Assail	Necesiantiny	Disrupt nerve	
Calypso	Neonicounyi	transmission	
Rimon	Insect	Chitin inhibitor	
Intrepid	growth	Molt accelerator	
Esteem	regulator	JH mimic	
Delegate	Spinosyn	Disrupt nerve	
Success	Spinosyn	transmission	
Proclaim	Avermectin	Disrupt nerve	
		transmission	
Altacor	Anthranilamide	Disrupt muscle action	
НМО		Asphyxiant	
Virus	Biologicals	Viral infection	
ВТ		Bacterial infection	

4.4% of Apple Industry has gone Organic with 54% growth expected in next 2 years

Organic growers use:

MD, CM-GV, Spinosid

Finally, Can Achieve Good CM Control!

Strategic IPM Plan

- Creating sustainable pest management
 - Targeting multiple pests
 - Optimize application timing and tank-mixing modes of action
 - Minimize insecticide resistance development
 - Use materials with different modes of action

Strategic IPM Plans

- Pheromones are used on 75% of apple acreage.
- Horticultural oil, neonicotinyls, IGRs can kill eggs when timed after petal fall.
 - Use of IGR's at 'petal fall' timing is also good for leafrollers.
- If using an ovicide early then delay 1st application of larvicide and tank-mix an ovicide and larvicide
- If needed, a second larvicide is applied 14 d later.
- 2nd Gen.: Use an IGR for leafrollers and a new class of larvicides for CM

But, the key is always proper timing

Has CM's Phenology Changed? Phenology model was developed in Michigan

→ Washington 2003 → Michigan 1974

Michigan model was validated in WA with prediction of 1st egg hatch

Broad Flight Periods in Unsprayed Sites in WA

Broad Periods of Egg Hatch in WA

Developed A New Model

Impact of New Model:

Timing of control tactics for CM, especially in the 1st generation, needs to be reconsidered and optimized.

Importance of each cover spray interval
Timing of ovicides
Covering the gap between overlapping generations

- Does resistance affect timing?
- Is there any evidence of cross resistance in CM to other insecticides?

Insecticide Resistance in CM is Diverse

Is resistance management going to be possible?

Selected Populations - 2003

the timing of the generations?

Shift in Emergence Curve

Shift in Emergence Curve

OP Resistant Populations Have Broader Periods of Flight

Resistance Reduces # of Eggs

Proportion clean fruit

MORE BAD NEWS!

Cross Resistance

Population	Guthion	Asana	Intrepid	Assail	Success
Lab	Α	Α	Α	Α	AB
SS/RS	A	А	A	А	А
RS	A	А	AB	AB	В
RS/RR	B	А	B	B	B

Neonate bioassay conducted at two rates per chemical. Three larvae per fruit. Means separated in sig. ANOVA's with LSD.

OP-Neonicotinyls Positive Cross Resistance

Another Example of Resistance Novaluron / Rimon

Benzoyl urea insect growth regulator

Mode of action:

Inhibition of chitin synthesis, causing abnormal endocuticular deposition and abortive moulting

Significant Differences

Populations		Mean fecundity	% egg hatch
LAB		B	Highest
YARL Farm	ity	Highest	A
Organic (3 yrs sprayed)	otibil	С	В
CONV (5 yrs unsprayed)	usce)	CD	B
CONV (1 yr unsprayed)	DP S	D	В
CONV		Lowest	Lowest

Negative Cross Resistance Can Occur

- Dunley and Welter (2000)
 - 2 10-fold levels between azinphosmethyl and chlorpyrifos and methyl parathion

Grower's Actions Impact Everything

And, the complex evolution of insecticide resistance marches on

