

Dormancy

- Dormancy concept different types of dormancy
- Chilling requirements factors affecting chilling requirements, monitoring systems, starting - , final date
- Methods to determine chilling requirements for new variety
- Timing rest-breaking sprays

Effect of rest breaking on Fruit size Fruit colour Fruit Fruit set **Budbreak** Physiological disorders firmness Vegetative Generative Stem-end Ca related russeting disorders (e.g. bitter pit) Future Production Storage potential Production Quality **Production export quality fruit**

© Copyright T.A.S.C. 2004

Definition Dormancy

- Physiological condition of deciduous fruit trees during which no noticeable growth takes place:
 - No cell division takes place in terminal or lateral buds.
 - Rest cannot be broken even when temperatures and soil moisture favor growth.
 - No bud break with gibberellic acid or rest breaking sprays (DNOC, Dormex, etc.) and pruning.
 - Dormancy or rest can only be broken by exposure to winter chilling

Dormancy three stages :

- paradormancy (summer dormancy or correlative inhibition)
- endodormancy (winter dormancy or rest)
- ecodormancy (imposed dormancy or quiescence)
- Paradormancy regulated by conditions within plant but outside bud, e.g. apical dominance
- Endodormancy controlled by conditions within bud, e.g., failure of buds to grow in autumn
- Ecodormancy controlled by conditions outside plant, failure of buds to grow in late winter

End of rest

- 50 % of the buds capable to grow within a given period time
- when held at an appropriate temperature with their bases in water

Factors affecting dormancy

- Dormancy induction , maintenance and release —
- Dormancy affected by :
 - site of the bud,
 - photo-period,
 - environmental induction
 - Low temperature in colder regions
 - Low temperatures + short days in warmer areas

continuum

- phytohormones,
- effective chilling temperatures,
- bud differences,
- environment and/or cultural practices,
- dormancy breaking chemicals,
- stress management.

Vegetative maturity critical point in dormancy cycle

© Copyright T.A.S.C. 2004

Chill-unit accumulation

- Temperatures > or < 0° C to 7° C are not believed to contribute toward chill-unit accumulation
- Temperatures below 0° C are considered to have no effect in breaking dormancy
- Models
- "Richardson" or "Utah "
- Temperatures between 0° and 16° C promote the breaking of rest.
- Maximum promotion at 7° C (1h at 7° C = 1 chill unit CU).

© Copyright T.A.S.C. 2004

"Dynamic model"

- Temperatures between 0 and 13° have positive effects
- Above 18° C negative
- 13° to 16° C enhance response, cycled with lower temperatures
- Dynamic model differs from Utah Model in that chilling units, once accumulated, cannot be negated by high temperature.

© Copyright T.A.S.C. 2004

South African model (ICE - Infruitec Chill Units)

 Mixture Richardson/Dynamic
 high temperatures no effect on chill unit

accumulation.

Degree C	Units
< 1.4	0
1.5 - 2.4	0.5
2.5 - 9.1	1
9.2 - 12.4	0.5
> 12.5	0

© Copyright T.A.S.C. 2004

buds break when exposed to 20° C in a laboratory

© Copyright T.A.S.C. 2004

This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific written consent.

Varieties

Chilling requirements	Varieties	
Category I (extreme high)	Rome Beauty, Macoun (family of Honeycrisp), Northern Spy	
Category II	McIntosh	
Category III	Winesap	
Category IV	Red Delicious types, Golden Delicious types, Cox Orange. Gala types, Fuji types (Own research)	
Category V	Yellow Newtown	
Category VI	Early McIntosh, Winter Banana, White Winter Pearmain, Granny Smith	
Category VII	Pink Lady®	

Rootstocks

Chilling requirements	Rootstocks
Very low	Indonesian rootstocks
Low	M26, M27, B9
High	MM104, MM106, Northern Spy
850 ICE/T.A.S.C. units	M9

© Copyright T.A.S.C. 2004

Start of rest-breaking

© Copyright T.A.S.C. 2004

Effect lack of chilling (or delayed foliation - DF) Lack of effective chilling has an influence not only on tree development but fruit quality as well:

Effect on the tree

- Poor and late start of laterals,
- Relative advantage to terminals,
- Correlative inhibition of laterals ("bare wood"),
- Vigorous and long terminal growth,
- Need for excessive pruning,
- Few spurs,
- Delay in fruit bearing,
- Low yield,
- Unchecked vegetative growth,
- High chilling requirement in vigorously growing branches,
- Delayed and protracted flowering season,
- Flower buds open prior to leaf buds,
- Excessive drain on reserves,
- Lack of leaf coverage during the season, leads to sunburn of wood,

© Copyright T.A.S.C. 2004

Effect lack of chilling (or delayed foliation - DF) Lack of effective chilling has an influence not only on tree development but fruit quality as well:

Fruit

- Poor fruit development,
- Small fruit,
- Irregular ripening
- Size distribution affected,
- Storage potential affected,
- Possible increase small fruit and in fruit drop.

© Copyright T.A.S.C. 2004

Rest - break Agents **Rest-breaking agents** Efficacy Timing of rest-breaking spray stage / depth endodormancy climate > 1 August weigh buds 2-year-old wood 2x per week plant not at same level rest-breaking @ same date Significant increase bud weight = physio. correct stage bud damage

© Copyright T.A.S.C. 2004

Effect lack of chilling on production and fruit set

- Extended blossom period
- < 30% fruit buds open
- female flower parts or seedforming parts deformed
- male organs or pollen producing parts affected

Fruit set affected

emergence > delayed than flower buds

© Copyright T.A.S.C. 2004

Leaf buds - greater chilling

This information remains the property of T.A.S.C. and cannot be sold or given to third person without specific

written consent.

requirement

Effect of lack of chilling on fruit quality **Negative effect on** delayed leaf development leaf fruit ratio <</pre> Fruit size ▶seed numbers < • Lack of spur leaves — Gibberellic acid < leaf fruit ratio <</pre> lower carbohydrate Fruit colour production

© Copyright T.A.S.C. 2004

Firmness

© Copyright T.A.S.C. 2004

Stem-end russeting

Examples: Gala, Red Delicious, Elstar, Stem-end cracking Fuji?

© Copyright T.A.S.C. 2004

Calcium related disorders

- Spur leaves responsible large part of the transport calcium
 - First from reserves
 - then from soil via roots

© Copyright T.A.S.C. 2004

Optimumising flow of calcium towards the fruit

- Fruit on dards with a large actively transpiring leaf area.
 effective rest-breaking
- well developed shoot emanating from the bourse capable of an optimum transpiration flow past the end of the dard.

© Copyright T.A.S.C. 2004

Effect on Fruit quality in practice

Effect chilling on fruit quality – Gala and Elstar

© Copyright T.A.S.C. 2004

This information remains the property of T.A.S.C. and cannot be sold or given to

third person without specific written consent.

*BP = Bitter Pit

******S-E Russting = Stem -end Russeting

Effect on Fruit quality in practice

© Copyright T.A.S.C. 2004